Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We have searched for radio pulsations toward 49 Fermi Large Area Telescope (LAT) 1FGL Catalogγ-ray sources using the Green Bank Telescope at 350 MHz. We detected 18 millisecond pulsars (MSPs) in blind searches of the data; 10 of these were discoveries unique to our survey. 16 are binaries, with eight having short orbital periodsPB< 1 day. No radio pulsations from young pulsars were detected, although three targets are coincident with apparently radio-quietγ-ray pulsars discovered in LAT data. Here, we give an overview of the survey and present radio andγ-ray timing results for the 10 MSPs discovered. These include the only isolated MSP discovered in our survey and six short-PBbinary MSPs. Of these, three have very-low-mass companions (Mc≪ 0.1M⊙) and hence belong to the class of black widow pulsars. Two have more massive, nondegenerate companions with extensive radio eclipses and orbitally modulated X-ray emission consistent with the redback class. Significantγ-ray pulsations have been detected from nine of the discoveries. This survey and similar efforts suggest that the majority of Galacticγ-ray sources at high Galactic latitudes are either MSPs or relatively nearby nonrecycled pulsars, with the latter having on average a much smaller radio/γ-ray beaming ratio as compared to MSPs. It also confirms that past surveys suffered from an observational bias against finding short-PBMSP systems.more » « less
-
ABSTRACT With unparalleled rotational stability, millisecond pulsars (MSPs) serve as ideal laboratories for numerous astrophysical studies, many of which require precise knowledge of the distance and/or velocity of the MSP. Here, we present the astrometric results for 18 MSPs of the ‘MSPSR$$\pi$$’ project focusing exclusively on astrometry of MSPs, which includes the re-analysis of three previously published sources. On top of a standardized data reduction protocol, more complex strategies (i.e. normal and inverse-referenced 1D interpolation) were employed where possible to further improve astrometric precision. We derived astrometric parameters using sterne, a new Bayesian astrometry inference package that allows the incorporation of prior information based on pulsar timing where applicable. We measured significant ($${>}3\, \sigma$$) parallax-based distances for 15 MSPs, including 0.81 ± 0.02 kpc for PSR J1518+4904 – the most significant model-independent distance ever measured for a double neutron star system. For each MSP with a well-constrained distance, we estimated its transverse space velocity and radial acceleration. Among the estimated radial accelerations, the updated ones of PSR J1012+5307 and PSR J1738+0333 impose new constraints on dipole gravitational radiation and the time derivative of Newton’s gravitational constant. Additionally, significant angular broadening was detected for PSR J1643−1224, which offers an independent check of the postulated association between the HII region Sh 2-27 and the main scattering screen of PSR J1643−1224. Finally, the upper limit of the death line of γ-ray-emitting pulsars is refined with the new radial acceleration of the hitherto least energetic γ-ray pulsar PSR J1730−2304.more » « less
-
Abstract Reliable neutron star mass measurements are key to determining the equation of state of cold nuclear matter, but such measurements are rare. Black widows and redbacks are compact binaries consisting of millisecond pulsars and semi-degenerate companion stars. Spectroscopy of the optically bright companions can determine their radial velocities, providing inclination-dependent pulsar mass estimates. Although inclinations can be inferred from subtle features in optical light curves, such estimates may be systematically biased due to incomplete heating models and poorly understood variability. Using data from the Fermi Large Area Telescope, we have searched for gamma-ray eclipses from 49 spider systems, discovering significant eclipses in 7 systems, including the prototypical black widow PSR B1957+20. Gamma-ray eclipses require direct occultation of the pulsar by the companion, and so the detection, or significant exclusion, of a gamma-ray eclipse strictly limits the binary inclination angle, providing new robust, model-independent pulsar mass constraints. For PSR B1957+20, the eclipse implies a much lighter pulsar (1.81 ± 0.07 solar masses) than inferred from optical light curve modelling.more » « less
-
Context. The PSR J2222−0137 binary system has a set of features that make it a unique laboratory for tests of gravity theories. Aims. To fully exploit the system’s potential for these tests, we aim to improve the measurements of its physical parameters, spin and orbital orientation, and post-Keplerian parameters, which quantify the observed relativistic effects. Methods. We describe an improved analysis of archival very long baseline interferometry (VLBI) data, which uses a coordinate convention in full agreement with that used in timing. We have also obtained much improved polarimetry of the pulsar with the Five hundred meter Aperture Spherical Telescope (FAST). We provide an improved analysis of significantly extended timing datasets taken with the Effelsberg, Nançay, and Lovell radio telescopes; this also includes previous timing data from the Green Bank Telescope. Results. From the VLBI analysis, we have obtained a new estimate of the position angle of the ascending node, Ω = 189 −18 +19 deg (all uncertainties are 68% confidence limits), and a new reference position for the pulsar with an improved and more conservative uncertainty estimate. The FAST polarimetric results, and in particular the detection of an interpulse, yield much improved estimates for the spin geometry of the pulsar, in particular an inclination of the spin axis of the pulsar of ∼84 deg. From the timing, we obtain a new ∼1% test of general relativity (GR) from the agreement of the Shapiro delay parameters and the rate of advance of periastron. Assuming GR in a self-consistent analysis of all effects, we obtain much improved masses: 1.831(10) M ⊙ for the pulsar and 1.319(4) M ⊙ for the white dwarf companion; the total mass, 3.150(14) M ⊙ , confirms this as the most massive double degenerate binary known in the Galaxy. This analysis also yields the orbital orientation; in particular, the orbital inclination is 85.27(4) deg – indicating a close alignment between the spin of the pulsar and the orbital angular momentum – and Ω = 187.7(5.7) deg, which matches our new VLBI estimate. Finally, the timing also yields a precise measurement of the variation in the orbital period, Ṗ b = 0.251(8) × 10 −12 ss −1 ; this is consistent with the expected variation in the Doppler factor plus the orbital decay caused by the emission of gravitational waves predicted by GR. This agreement introduces stringent constraints on the emission of dipolar gravitational waves.more » « less
-
Abstract We present 294 pulsars found in GeV data from the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs) discovered in deep radio searches of LAT sources will likely reveal pulsations once phase-connected rotation ephemerides are achieved. A further dozen optical and/or X-ray binary systems colocated with LAT sources also likely harbor gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and candidates, 10% of all known pulsars, compared to ≤11 known before Fermi. Half of the gamma-ray pulsars are young. Of these, the half that are undetected in radio have a broader Galactic latitude distribution than the young radio-loud pulsars. The others are MSPs, with six undetected in radio. Overall, ≥236 are bright enough above 50 MeV to fit the pulse profile, the energy spectrum, or both. For the common two-peaked profiles, the gamma-ray peak closest to the magnetic pole crossing generally has a softer spectrum. The spectral energy distributions tend to narrow as the spindown power decreases to its observed minimum near 1033erg s−1, approaching the shape for synchrotron radiation from monoenergetic electrons. We calculate gamma-ray luminosities when distances are available. Our all-sky gamma-ray sensitivity map is useful for population syntheses. The electronic catalog version provides gamma-ray pulsar ephemerides, properties, and fit results to guide and be compared with modeling results.more » « less
-
ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.more » « less
An official website of the United States government
